I) Exponentielle de matrices

Exercice 1: * b.15.4, b.15.6

- 1. Soit $A \in \mathcal{M}_2(\mathbb{C})$. Déterminer $(a, b) \in \mathbb{C}^2$ tel que $\exp(A) = aI_2 + bA$.
- 2. Soit E un \mathbb{R} -espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ tel que $(u \mathrm{id})^2 = 0$. Calculer e^u .

Exercice 2: ★★ *b.15.11*

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ vérifie (P) si pour tout $X \in \mathbb{C}^n$, il existe un sousespace affine strict de \mathbb{C}^n contenant $\{e^{tA}X, t \in \mathbb{R}\}.$

- 1. Montrer que si $\det A = 0$ alors A vérifie (P).
- 2. Quelles sont les matrices diagonalisables vérifiant (P)?
- 3. Quelles sont les matrices vérifiant (P)?

Exercice 3: ★★ *b.15.13*

On s'intéresse à l'ensemble des matrices toutes puissantes, id est aux matrices $M \in \mathcal{M}_p(\mathbb{K})$ telles que pour tout $n \in \mathbb{N}^*$, il existe $A \in \mathcal{M}_p(\mathbb{K})$ telle que $M = A^n$.

- 1. Traiter le cas p = 1.
- 2. Montrer que toute matrice M dont le polynôme caractéristique est scindé peut s'écrire sous la forme M = D + N avec D diagonalisable, N nilpotente et DN = ND.

On note $\mathcal{N}_p(\mathbb{K})$ l'ensemble des matrices nilpotentes et $\mathcal{U}_p^{(\mathbb{K})} = \{I_p + N, N \in \mathcal{N}_p(\mathbb{K})\}$ l'ensemble des matrices unipotentes.

De plus pour
$$U = I_p + N \in \mathcal{U}_p(\mathbb{K})$$
, on définit $\ln(U) = \sum_{k=1}^{p-1} (-1)^{k-1} \frac{N^k}{k}$.

- 3. Montrer que la de $\mathcal{U}_p^{(\mathbb{K})}$ dans $\mathcal{N}_p(\mathbb{K})$ est la bijection réciproque de exp de $\mathcal{N}_p(\mathbb{K})$ dans $\mathcal{U}_p^{(\mathbb{K})}$.
- 4. Quelles sont les matrices unipotentes qui sont toutes puissantes?
- 5. Quelles sont les matrices dont le polynôme caractéristique est scindé qui sont toutes puissantes?

Exercice 4: ★★★ *b.14.17*

Soient $a_n \leqslant \cdots \leqslant a_1$ et $b_n \leqslant \cdots \leqslant b_2 \leqslant b_1$, et pour $\sigma \in \mathfrak{S}_n$, $T_{\sigma} = \sum_{i=1}^n a_i b_{\sigma(i)}$.

- 1. Trouver $\max_{\sigma \in \mathfrak{S}_n} T_{\sigma}$. Soient $A = \operatorname{diag}(a_1, \dots, a_n)$ et $B = \operatorname{diag}(b_1, \dots, b_n)$. On cherche $\max_{U \in \operatorname{SO}_n(\mathbb{R})} \operatorname{Tr}(AUBU^{-1})$.
- 2. Montrer que le maximum est bien atteint en $U_0 \in SO_n(\mathbb{R})$.
- 3. En considérant l'application $U: t \longmapsto \exp(tH)U_0$ pour toute matrice H antisymétrique réelle.
- 4. En déduire que $Tr(AB) \leq \sum_{i=1}^{n} a_i b_i$.

Exercice 5: *** b.14.19

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. On pose [A, B] = AB - BA et on suppose que [A, B] commute avec A et B.

- 1. Montrer que $[A, B]e^{A} = e^{A}[A, B]$.
- 2. Montrer que $e^{tA}Be^{-tA}=B+t[A,B]$ pour tout réel t.
- 3. Montrer que $\exp(A)\exp(B) = \exp A + B + \frac{1}{2}[A, B]$.
- 4. On pose V = Vect(A, B, [A, B]). Montrer que si $[A, B] \neq 0$, V est de dimension 3.
- 5. Montrer que $\left\{e^{M},M\in V\right\}$ est stable par multiplication.

II) Équations différentielles

A) Résolution explicite d'équations différentielles

Exercice 6: ★ *b.16.1*

Résoudre les systèmes différentiels linéaires :

1.
$$\begin{cases} x' = x + 2y - z \\ y' = 2x + y' - 2z \\ z' = -x - 2y + z \end{cases}$$
2.
$$\begin{cases} y' = y + z + \sin t \\ z' = -y + 3z \end{cases}$$
3.
$$\begin{cases} x' = 2x + y + z \\ y' = x - y - z \\ z' = -x + 2y + 2z \end{cases}$$

4.
$$\begin{cases} x' = x + y - z \\ y' = 2x + y - 2z \\ z' = -2x + 2y + z \end{cases}$$
5.
$$\begin{cases} y' + y = z \\ z' + 2z = y - 1 \end{cases}$$
6.
$$\begin{cases} x' = 2y + 2z \\ y' = -x + 2y + 2z \\ z' = -x + y + 3z \end{cases}$$

2.
$$\begin{cases} y' = y + z + \sin t \\ z' = -y + 3z \end{cases}$$

5.
$$\begin{cases} y' + y = z \\ z' + 2z = y - 1 \end{cases}$$

3.
$$\begin{cases} x' = 2x + y + z \\ y' = x - y - z \\ z' = -x + 2y + 2 \end{cases}$$

6.
$$\begin{cases} x' = 2y + 2z \\ y' = -x + 2y + 2z \\ z' = -x + y + 3z \end{cases}$$

Exercice 7: \star b.16.3

Résoudre sur $\left[0, \frac{\pi}{2}\right]$ puis sur $\left[0, \pi\right] : \cos(x)y'(x) - \sin(x)y - \cos^3(x) = 0$.

Exercice 8: ** b.16.6

Intégrer l'équation différentielle $2xy' + y = \frac{1}{1-x}$.

Exercice 9: $\star\star$ b.16.9

- 1. Déterminer les fonctions f de classe \mathcal{C}^2 sur \mathbb{R} telle que $f''(x) + f(-x) = \cos(x)$.
- 2. Trouver les fonctions $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telles que pour tout $x \in \mathbb{R}$, f''(x) + f(-x) = $x + \cos(x)$.
- 3. Trouver les fonctions $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telles que pour tout $x \in \mathbb{R}$, $f'(x) + f(-x) = e^x$.

Exercice 10: ** b.16.10

Soient I un intervalle de \mathbb{R} , $k \in \mathbb{N}^*$, u une application de classe \mathcal{C}^k de I dans \mathbb{R} . Pour $f \in \mathcal{C}^k(I, \mathbb{R})$, soit $L_u(f) = f' + uf$.

- 1. Montrer que L_u est linéaire. Calculer $L_u \circ L_u$.
- 2. Résoudre $y'' + 2xy' + (1+x^2)y = 0$.

Exercice 11: ** b.16.12

1. Résoudre sur \mathbb{R}_+^* , par la méthode de variation des deux constantes, $y'' + y = \frac{1}{x}$ (on pourra utiliser $\int_x^{+\infty} \frac{\sin t}{t} dt$ et $\int_x^{+\infty} \frac{\cos t}{t} dt$).

- 2. En déduire une expression de $f(x) = \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$, pour x > 0.
- 3. Calcular $\int_0^{+\infty} \frac{\sin t}{t} dt$.

B) Séries entières et EDL

Exercice 12: * b.16.15

- 1. Solutions développables en série entière de x(x-1)y'' + 3xy' + y = 0.
- 2. Calculer les sommes des séries trouvées.
- 3. Décrire un moyen permettant d'obtenir les solutions sur \mathbb{R}_{-}^{*} ,]0,1[et $]1,+\infty[$.

Exercice 13: ★★ *b.16.18*

Soit $n \in \mathbb{N}^*$. Déterminer la dimension de l'espace des solutions de l'équation différentielle $x^2y'' + xy' + (x^2 - n^2)y = 0$ développables en série entière au voisinage de 0.

C) Etude qualitative de solutions d'EDL d'ordre 1 et 2

Ordre 1:

Exercice 14: ★★★ *b.16.37*

Soient a > 0 et f une fonction continue de \mathbb{R} dans \mathbb{R} telle que $\int_{\mathbb{R}} f^2$ converge. Montrer que l'équation différentielle y' - ay = f admet une unique solution de carré intégrable sur \mathbb{R} .

Ordre 2:

Exercice 15: ** b.16.22

Pour f de classe \mathcal{C}^1 de \mathbb{R}_+ dans \mathbb{R} , monotone et de limite finie en $+\infty$, montrer que les solutions de y'' + y = f sont bornées.

Exercice 16: ★★ b.16.23

- 1. Résoudre y'' + 4y = 0.
- 2. Montrer que $h(x) = \frac{1}{2} \int_0^x g(t) \sin(2x 2t) dt$, où g est continue de \mathbb{R} dans \mathbb{R} est

solution de y'' + 4y = g(t) puis résoudre cette équation différentielle.

3. Soit f de classe C^2 telle que $f'' + 4f \ge 0$. Montrer que $\forall x \in \mathbb{R}, f(x) + f\left(x + \frac{\pi}{2}\right) \ge 0$.

Exercice 17: ** b.16.24

- 1. Résoudre $y'' y = \frac{2}{ch^3(x)}$.
- 2. Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telle que pour tout $x \in \mathbb{R}$, $f''(x) f(x) \ge \frac{2}{ch^3(x)}$ et f(0) = f'(0) = 0. Montrer que pour tout $x \in \mathbb{R}$, $f(x) \ge \frac{sh^2(x)}{ch(x)}$.

Exercice 18: ** b.16.26

- 1. Soit $q \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}_+^*)$; montrer qu'une solution non-nulle de y'' qy = 0 a au plus un zéro dans \mathbb{R}_+ .
- 2. Soit y l'unique solution maximale vérifiant y(0) = y'(0) = 1; montrer que $y(t) \ge 1 + t$ pour tout $t \ge 0$.
- 3. Montrer que $g(t) = y(t) \int_{t}^{+\infty} \frac{\mathrm{d}u}{y^{2}(u)}$ est définie sur \mathbb{R}_{+} , qu'elle est de classe \mathcal{C}^{2} et solution de l'équation différentielle. Montrer que g est bornée.
- 4. Qu'en déduire pour h si h est une solution bornée de l'équation?

Exercice 19: ★★ b.16.27

Soient $q \in \mathcal{C}^0([a, +\infty[, \mathbb{R}_+) \text{ et } (E) \text{ l'équation différentielle } y'' = q(x)y.$

- 1. Soit f une solution de (E) telle que f(a) > 0 et f'(a) > 0. Montrer que f et f' sont strictement positives et que f tend vers $+\infty$ en $+\infty$.
- 2. Soient u et v les solutions de (E) telles que u(a) = 1, u'(a) = 0 et v(a) = 0, v'(a) = 1.

 Calculer u'v uv'. Montrer que, sur $]a, +\infty[$, $\frac{u}{v}$ et $\frac{u'}{v'}$ sont monotones de monotonies contraires. Montrer que $\frac{u}{v}$ et $\frac{u'}{v'}$ tendent en $+\infty$ vers la même limite réalle.
- 3. Montrer qu'il existe une unique solution g de (E), strictement positive, telle que g(a) = 1 et telle que g décroisse sur $[a, +\infty[$.

Exercice 20: ** b.16.30

Soient a et b deux fonctions continues et 1-périodiques de \mathbb{R} dans \mathbb{C} , E l'espace des solutions de y'' + a(t)y' + b(t)y = 0. Montrer qu'il exsite $\lambda \in \mathbb{C}^*$ et $y \in E \setminus \{0\}$ tels que $\forall t \in \mathbb{R}, y(t+1) = \lambda y(t)$.

Exercice 21: ** b.16.33

On considère $q \in \mathcal{C}^0(I, \mathbb{R}_-)$ et $(x_1, x_2) \in I^2$ (deux points distincts). Soit l'équation $(S): \left\{ \begin{array}{l} y'' + qy = 0 \\ y(x_1) = a \text{ et } y(x_2) = b \end{array} \right.$

- 1. Quelle est la dimension de $S_{x_2} = \{y \in S, y(x_2) = 0\}$? Montrer que si b = 0, alors pour tout a, (S) a une unique solution.
- 2. Montrer que cette unique solution est monotone.
- 3. Montrer l'existence et l'unicité de la solution pour tout $(a,b) \in \mathbb{R}^2$.

Exercice 22: ★★★ *b.16.32*

Soit $q \in C^1(\mathbb{R}_+, \mathbb{R})$. On suppose que q' est intégrable sur \mathbb{R}_+ et que $q(t) \xrightarrow[t \to +\infty]{} 0$. Montrer que les solutions de y'' + (q+1)y = 0 sont bornées sur \mathbb{R}_+ .

D) Etude qualitative de solutions d'EDL de tout ordre

Exercice 23: ** b.16.45

On pose, pour A et B dans $\mathcal{M}_n(\mathbb{C})$, [A, B] = AB - BA. Soient $n \in \mathbb{N}^*$, $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{C})$ de classe \mathcal{C}^1 . On suppose qu'il existe une application continue B de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$ telle que, pour tout $t \in \mathbb{R}$, A'(t) = [A(t), B(t)]. Montrer que le polynôme caractéristique de A(t) est indépendant de t.

Exercice 24: *** b.16.39

- 1. Soit $a \in \mathbb{C}$ tel que $\operatorname{Im}(a) < 0$, et f une fonction de classe \mathcal{C}^1 sur \mathbb{R}_+ telle que $\lim_{x \to +\infty} f'(x) af(x) = \ell$. Montrer que $\lim_{x \to +\infty} f(x) = -\frac{\ell}{a}$.
- 2. Soit f une fonction de classe C^2 sur \mathbb{R}_+ telle que $\lim_{x \to +\infty} f''(x) + 2f'(x) + f(x) = 0$. Montrer que $\lim_{x \to +\infty} f(x) = 0$. Que peut-on dire des limites de f' et de f''?
- 3. Soit f une fonction de classe C^2 sur \mathbb{R}_+ telle que $\lim_{x \to +\infty} f''(x) + bf'(x) + cf(x) = \ell$, avec $P = X^2 + bX + c$ qui est scindé à racines complexes de parties réelles

strictement négatives. Montrer que $\lim_{x\to +\infty} f(x) = \frac{\ell}{c}$. Que peut-on dire des limites de f' et f''?

4. Soit f une fonction de classe \mathcal{C}^n sur \mathbb{R}_+ telle que $\lim_{x \to +\infty} f^{(n)}(x) + \sum_{k=0}^{n-1} a_k f^{(k)}(x) = \ell$, avec $P = X^n + \sum_{k=0}^{n-1} a_k X^k$ polynôme scindé à racines complexes de parties réelles strictement négatives. Montrer que $\lim_{x \to +\infty} f(x) = \frac{\ell}{a_0}$. Que peut-on dire des limites de $f^{(k)}$?

Exercice 25: *** b.16.49

Soient $p: \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ continue et $s_0 \in \mathcal{M}_n(\mathbb{R})$.

1. Montrer qu'il existe une unique fonction $s \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_n(\mathbb{R}))$ telle que $s(0) = s_0$ et $\forall t \in \mathbb{R}, s'(t) = p(t)s(t) - s(t)p(t)$.

On suppose que s_0 est symétrique et que p(t) est antisymétrique pour tout $t \in \mathbb{R}$.

- 2. Montrer que s(t) est symétrique pour tout $t \in \mathbb{R}$.
- 3. Montrer qu'il existe $u \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_n(\mathbb{R}))$ telle que $\forall t \in \mathbb{R}, s(t) = u(t)s_0u(t)^\top$.
- 4. Montrer qu'il existe $u \in \mathcal{C}^1(\mathbb{R}, \mathcal{O}_n(\mathbb{R}))$ telle que $\forall t \in \mathbb{R}, s(t) = u(t)s_0u(t)^{\top}$.

Exercice 26: *** b.16.50

Soient $A \in \mathcal{M}_n(\mathbb{R})$, $B \in \mathcal{M}_{n,p}(\mathbb{R})$ et $T \in \mathbb{R}_+^*$. On note A_T l'ensemble des $v \in \mathbb{R}^n$ pour lesquels il existe $u \in \mathcal{C}^0([0,T],\mathbb{R}^p)$ telle que la solution X du problème de CAUCHY (X'(t) = AX(t) + Bu(t); X(0) = 0) vérifie X(T) = v. Montrer que $A_T = \mathbb{R}^n$ si et seulement si la matrice blocs $(B AB \dots A^{n-1}B)$ est de rang n.

Exercice 27: *** b.16.52

Soient E l'espace des fonctions de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{C} . Pour $a \in \mathbb{R}$ et f dans E, soit f_a l'élément de E donné par $\forall x \in \mathbb{R}, f_a(x) = f(x-a)$. Déterminer les $f \in E$ tels que Vect $\{f_a, a \in \mathbb{R}\}$ soit de dimension finie.

III) Calcul différentiel

A) Etude de la régularité

Exercice 28: ★ *b.17.1*

Etudier les limites éventuelles en (0,0) des fonctions suivantes :

1.
$$f(x,y) = (x+y)\sin\left(\frac{1}{x^2+y^2}\right)$$

$$3. \ f(x,y) = x^y$$

2.
$$f(x,y) = \frac{|x+y|}{x^2 + y^2}$$

4.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

Exercice 29: ★ b.17.5

On pose
$$f(x,y) = \sum_{n=0}^{+\infty} \ln(1 + x^{2n} + y^{2n}).$$

- 1. Déterminer le domaine de définition D de f.
- 2. Montrer que f est de classe C^1 sur D.

Exercice 30: ★ *b.17.8*

Soit
$$f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$$
. On considère $g: \left\{ \begin{array}{ll} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \left\{ \begin{array}{ll} \frac{f(x)-f(y)}{x-y} & \text{si } x \neq y \\ f'(x) & \text{si } x = y \end{array} \right. \right.$

- 1. Montrer que g est de classe \mathcal{C}^{∞} sur \mathbb{R}^2 .
- 2. Calculer $J_{p,q} = \int_0^1 (1-t)^p t^q dt$. En déduire la valeur des dérivées partielles de g sur la diagonale.
- 3. On suppose ici $f=\sin$. Tracer l'ensemble d'équations g(x,y)=0. Déterminer les extrema de g.

Exercice 31: $\star\star$ b

Soit $E=\mathbb{R}^n$. En quels points les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sont-elles différentiables ?

8

B) Etudes d'extrema

Exercice 32: ★★ b.17.15

Soient E un espace euclidien, a et b deux vecteurs non-nuls de E. Pour $x \in E \setminus \{0\}$, soit $f(x) = \frac{\langle x \mid a \rangle \langle x \mid b \rangle}{\|x\|^2}$. Déterminer les bornes supérieure et inférieure de f.

Exercice 33: ★★ *b.17.17*

On considère n expériences indépendantes ayant les probabilités de réussite respectives p_1, \ldots, p_n . On note N le nombre d'expériences ayant réussi.

- 1. Déterminer $\mathbb{E}(N)$ et $\mathbb{V}(N)$.
- 2. On fixe $m \in \mathbb{R}_+^*$ et $n \in \mathbb{N}$ avec n > m. Quel est le maximum de $\mathbb{V}(N)$ sous la contrainte $\mathbb{E}(X) = m$?

Exercice 34: *** b.17.16

On munit \mathbb{R}^m de sa structure euclidienne canonique. Soient x_1, \ldots, x_n des vecteurs de \mathbb{R}^m . On note \mathcal{A} l'ensemble des matrices de rang 1 de $\mathcal{M}_m(\mathbb{R})$ et on pose

$$\phi: M \in \mathcal{M}_m(\mathbb{R}) \longmapsto \sum_{i=1}^n \|x_i - Mx_i\|^2$$

Montrer que la restriction de ϕ à \mathcal{A} admet un minimum et le calculer à l'aide de la matrice $\sum_{i=1}^{n} x_i x_i^{\top}$.

Indication. Montrer que $\phi(xy^{\top}) \geqslant \phi(xx^{\top})$ pour tout vecteur unitaire $x \in \mathbb{R}^m$ et tout $y \in \mathbb{R}^m$.

Exercice 35: *** b.17.20

Principe de maximalité de Hopf.

Soient B (resp. S) la boule unité ouverte (resp. la sphère unité) de \mathbb{R}^n pour la norme euclidienne canonique, f une fonction continue de \overline{B} dans \mathbb{R} , de restriction à B de classe C^2 , $(a_{i,j})_{1 \leq i,j \leq n}$ et $(b_i)_{1 \leq i \leq n}$ des fonctions continues de B dans \mathbb{R} telles que, pour tout $x \in B$, la matrice $(a_{i,j}(x))_{1 \leq i,j \leq n}$ appartienne à $\mathcal{S}_n^+(\mathbb{R})$.

On suppose enfin que $\sum_{1\leqslant i,j\leqslant n}a_{i,j}\frac{\partial^2 f}{\partial x_j\partial x_i}+\sum_{i=1}^nb_i\frac{\partial f}{\partial x_i}\text{ est indentiquement nulle sur }B.$ Montrer que f atteint son maximum sur S.

C) Equations aux dérivées partielles

Exercice 36: ★★ b.17.22

En effectuant un changement de variables, trouver les fonctions f vérifiant

$$\frac{\partial^2 f}{\partial x^2} - 4 \frac{\partial^2 f}{\partial y^2} = x^2 y^3$$

Exercice 37: ★★ b.17.27

Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. On définit $\phi : \begin{cases} \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \\ (x,y) \longmapsto (f(x,y), 2xy) \end{cases}$. Déterminer f pour que la matrice jacobienne de ϕ soit une matrice de similitude directe.

D) Fonctions convexes ou avec d'autres propriétés de régularité

Exercice 38: ★★ *b.17.30*

Soient $n \in \mathbb{N}^*$, $f = (f_1, \dots, f_n)$ une fonction de classe \mathbb{C}^2 de \mathbb{R}^n dans \mathbb{R}^n .

- 1. Montrer que f est une application affine si et seulement si sa différentielle est constante.
- 2. On suppose que df est constante et que f d'annule en tout point de la frontière d'un ouvert borné non-vide. Montrer que f est nulle.
- 3. Montrer le lemme : si X est un ensemble, et $\phi: X \to \mathbb{R}$ vérifie $\forall (x, y, z) \in X^3, \phi(x, y, z) = \phi(y, x, z) = -\phi(z, y, x)$, alors $\phi = 0$.
- 4. Montrer l'équivalence entre :
 - il existe $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique et $b \in \mathbb{R}^n$ tels que $\forall x \in \mathbb{R}^n$, f(x) = Ax + b;
 - pour tout $x \in \mathbb{R}^n$, la matrice jacobienne de f en x est antisymétrique.

On considèrera, pour $1 \leq i, j, k \leq n$, $f_{i,j,k} = \frac{\partial^2 f_i}{\partial x_k \partial x_i}$.

5. On suppose f de classe C^2 . Montrer que f est une isométrie de E pour la distance euclidienne si et seulement si pour tout $x \in E$, df(x) est une application orthogonale.

Exercice 39: ★★ b.17.33

On considère une fonction $g \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ telle qu'il existe c > 0 et telle que pour tout $(a, h) \in \mathbb{R}^n \times \mathbb{R}^n$, $\langle dg(a) \cdot h \mid h \rangle \geqslant c \|h\|^2$.

- 1. Montrer que pour tout $(a,b) \in \mathbb{R}^n \times \mathbb{R}^n$, $\langle g(b) g(a) \mid b a \rangle \geqslant c \|b a\|^2$.
- 2. Montrer que q réalise une bijection de \mathbb{R}^n vers \mathbb{R}^n .

Exercice 40: ★★ *b.17.37*

Soient f une application \mathcal{C}^1 de \mathbb{R}^n dans \mathbb{R} , $L \in \mathbb{R}_+^*$.

- 1. Montrer que si f est convexe alors $\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \langle \nabla f(y) \nabla f(x) \mid y x \rangle \geq 0$.
- 2. On suppose que f est convexe et que l'application ∇f est L-lipschitzienne. Montrer que

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \langle \nabla f(y) - \nabla f(x) \mid y - x \rangle \geqslant \frac{1}{L} \left\| \nabla f(x) - \nabla f(y) \right\|^2$$

3. Montrer la réciproque.

Exercice 41: ★★★ *b.17.36*

Soient $n \in \mathbb{N}^*$, f une fonction de \mathbb{R}^n dans \mathbb{R} .

- 1. Montrer que f est convexe si et seulement si, pour tout couple (u, v) d'éléments de \mathbb{R}^n , la fonction $t \longmapsto f(u + tv)$ est convexe sur \mathbb{R} .
- 2. On suppose que f est convexe. Soit $x \in \mathbb{R}^n$ tel que toutes les dérivées partielles $\partial_i f(x)$, pour $1 \le i \le n$ existent. Montrer que f est différentiable en x.

Exercice 42: ★★★ b.17.38

Soient $n \in \mathbb{N}^*$ et $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$. On suppose que $\mathrm{d} f \in \mathcal{F}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}))$ est injective et que $\frac{f(x)}{\|x\|} \xrightarrow{\|x\| \to +\infty} +\infty$. Montrer que f est strictement convexe et que $\mathrm{d} f$ réalise un homémorphisme de \mathbb{R}^n sur $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$.

E) Fonctions harmoniques et holomorphes

Exercice 43: ★★ b.17.42

Soit $f \in \mathcal{C}^2(\mathbb{R}^2, \mathbb{R})$ telle que $\Delta f = 0$. Soit $g: (r, \theta) \mapsto f(r\cos\theta, r\sin\theta)$.

- 1. Montrer que $r \frac{\partial}{\partial r} \left(r \frac{\partial g}{\partial r} \right) + \frac{\partial^2 g}{\partial \theta^2} = 0.$
- 2. Soit $\phi : r \in \mathbb{R} \mapsto \int_0^{2\pi} f(r\cos\theta, r\sin\theta) d\theta$. Montrer que ϕ est de classe C^2 et que $(r\phi')' = 0$.
- 3. Montrer que ϕ est constante.

Exercice 44: ★★ b.17.46

Soit f une fonction sur Ω un ouvert non-vide de \mathbb{C} . On pose u et v des fonctions à valeurs réelles telles que pour tout $z \in \Omega$, z = x + iy, $f(z) = \tilde{f}(x, y) = u(x, y) + iv(x, y)$. On suppose u et v de classe \mathcal{C}^1 .

1. Montrer que si u et v vérifient les conditions de CAUCHY-RIEMANN, id est

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

alors $\Delta u = \Delta v = 0$.

2. On suppose que $f_{|\mathbb{D}(0,R)}$ est somme d'une série entière; calculer pour tout $z \in \mathbb{D}(0,R)$, $\left(\frac{\partial f}{\partial x} + \mathrm{i}\frac{\partial f}{\partial y}\right)(z)$ et en déduire que les conditions de CAUCHY-RIEMANN sont vérifiées.

Soient Ω un ouvert non-vide de \mathbb{C} , f une fonction de Ω dans \mathbb{C} . On dit que f est holomorphe au point z_0 de Ω si $\frac{f(z) - f(z_0)}{z - z_0}$ tend vers une limite finie quand z tend vers z_0 .

- 3. Montrer que le fait que f vérfie les conditions de CAUCHY-RIEMANN est équivalent à l'holomorphie de f.
- 4. On suppose que $\Omega = \mathbb{D}(0,R)$, que $f_{|\mathbb{D}(0,R)}$ est de classe \mathcal{C}^2 et que pour tout $z \in \mathbb{D}(0,R)$, $\left(\frac{\partial f}{\partial x} + \mathrm{i}\frac{\partial f}{\partial y}\right)(z) = 0$; montrer que $f_{|\mathbb{D}(0,R)}$ est somme d'une série entière.

F) Espaces tangents

Exercice 45: $\star\star$ b

Soit $f \in \mathcal{D}^1(I, \mathbb{R})$, où I est un intervalle de \mathbb{R} . Notons :

- $\triangleleft \mathcal{D}$ la droite d'équation $y = (x x_0)f'(x_0) + f(x_0)$;
- $\triangleleft \mathcal{T}_{x_0}$ l'espace tangent à Γ en $(x_0, f(x_0))$.

Montrer que

$$\mathcal{D} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \mathcal{T}_{x_0}$$

Exercice 46: ★★★ *b.17.48*

- 1. Soit U un ouvert de \mathbb{R}^n , et soit $a \in U$. Déterminer les vecteurs tangents à U en a.
- 2. Soit X une partie de \mathbb{R}^n . On suppose qu'en tout point $a \in X$, tout vecteur de \mathbb{R}^n est tangent à X en a. Est-ce-que X est nécessairement un ouvert de \mathbb{R}^n ?